Feed to fuel your hunt

Training, exercise and correct nutrition are essential to ensure your working dog’s optimal performance. Food is fuel, and working dogs will run far better and avoid fatigue on a premium, highly digestible diet designed to keep the muscles working and the blood flowing.

Working dog breeds are typically strong, agile and enduring. However, they may run greater risks of injury and stress. The correct nutrition ensures that the digestive system works as efficiently as possible, enabling the immune system to play its primary role in protecting the body, rather than dealing with food ingredients that hinder metabolism.

Promoting healthy growth through an appropriate diet from puppyhood allows adult working dogs to develop strong bones and joints and a well-muscled frame. Strong neck and shoulder muscles allow for a greater lung capacity, better endurance and necessary power for carrying out his duties or sporting activities. Sensible feeding may not prevent injury but may reduce incidences or alleviate symptoms. A strong, healthy body that is protected by an equally strong, healthy immune system has greater healing capacity, too.

For working dogs, the immune, cardiovascular and musculoskeletal systems are stressed during any period of prolonged physical exertion. Mental health, too, should not be overlooked, and the nervous system may also benefit from nutritional support to help to promote alertness and improve concentration levels.

Fitting feed

Timing and frequency of feeding is important to ensure that your dog has sufficient energy at times when he needs it. Avoid heavy meals immediately before and after exercise.

In the stomach, digestive enzymes start breaking down the food to enable nutrients to be absorbed later in the digestive sequence. As the food moves through the small intestine, proteins and fats will be absorbed. The large intestine further breaks down nutrients—in particular, dietary fibers and carbohydrates. Finally, water is removed in the colon and the last amounts of fat absorbed.

You will know if the diet is not suitable. For example, digestive odors and poor stool quality are early signs. Loose stools or diarrhea may suggest that the feed is causing digestive upset. Coat condition can suffer if the fat level and fatty acid balance are not suitable, and skin conditions and ear problems can indicate food allergies.

When moving to a new diet, it is important to switch slowly to be sure that changes are accepted well. Try the new diet for at least a month before making a final decision on how it is working. Some changes will take this long to appear in the coat and general condition.

Balancing act

All dogs require a balanced diet that provides sufficient energy for the work they are bred to do. Naturally, a working dog will require more calories than a family pet. For peak performance, the diet must not only provide the fuel for energy but also optimal levels of essential nutrients that the body requires to function efficiently.

The energy requirement of working dogs depends on the intensity and duration of the exercise as well as environmental conditions. Energy-dense foods allow increased nutritional demands to be met during the season without having to feed large volumes of food that take longer to digest and metabolize.

Fats contain approximately twice the energy of proteins and carbohydrates, and studies on canine athletes have shown that fats improve endurance. In dogs, 70-90 percent of the energy for sustained work comes from fat metabolism, and only a small amount from carbohydrates. This is why it is important to provide optimal levels of high-quality fat for fuel.

Protein is a crucial nutrient, and again must be highly digestible. Chicken has one of the highest biological values, meaning that it is easily broken down to support the body’s structural and functional demands.

Working dogs may also benefit from functional ingredients such as natural antioxidants. The adverse affects of stress on both human and canine health are often underrated. Working dogs are particularly subject to physical stress due to the demands of their sport. When the body is under stress, free radicals are released. Antioxidants work against these potentially harmful effects.

Moderate levels of carbohydrates are needed for working dogs to promote sustained energy. Human athletes often dramatically increase carbohydrate intake to improve the availability of glycogen for anaerobic energy metabolism in muscles.

Research in dogs is limited, but studies so far have concluded that such glycogen loading is ineffective in canines.

High-performance dogs require higher levels of vitamin C, an antioxidant vitamin, due to increased demands from oxidative stress. Make sure your working dog’s diet includes an optimal level.

Commercial complete diets are the most popular for working dogs due to their convenience and economy. It is an absolute must, however, to ensure that only high-quality, highly digestible ingredients are incorporated into the working dog’s diet.

More information about choosing the right food for your working dog is online at Visit your local MFA or AGChoice retailer for a trusted selection of nutrition and pet health products such as the Victor Super Premium Pet Food line.

  • Created on .
  • Hits: 1017

Consider these steps to ‘drought-proof’ your farm

It’s no secret that Missouri has been at a rainfall deficit since late summer 2017. At press time, nearly 70 percent of the state was still in drought conditions, according to the U.S. Drought Monitor for Sept. 13. Drought intensity and resulting impacts vary widely, but every producer in Missouri likely experienced some decline in production due to drier-than-average conditions. Whether it’s reduced hay yield, dormant pastures, decreased crop yield or lack of water for livestock, many farmers and ranchers had to alter short-term plans in response. When the drought breaks, it will be time to think about long-term recovery in preparation for the next drought.

I spent quite a bit of time across the state this summer talking to producers about drought impacts on their farm and mitigation strategies to consider. Many producers told me they weren’t feeling the effects quite as much as their neighbors. For these folks, the common theme was that they used the 2012 drought as a learning experience and have worked to “drought-proof” their operation since then. It’s not that they didn’t have any ill effects this summer, but the situation wasn’t as serious for them as it was for so many.

In contrast to western states where water is severely limiting, we are typically spoiled with more than 40 inches of rainfall on average each year in Missouri. Because annual rainfall of 40 inches is more than enough to grow a bumper crop and plenty of forage, we aren’t forced to be as efficient at capturing and using that moisture as we should be. Improving water infiltration into the soil, establishing reliable water sources for livestock and keeping forages healthy and diverse are all things to consider when thinking about guarding your operation against drought.

Keeping residue and actively growing plants on your fields and pastures at all times will reduce runoff and increase the amount of water that makes it into the soil profile. No-till, minimum-till, cover crops and rotational grazing are all practices that will increase infiltration over time.   

If you rely on ponds to water livestock, you would be wise to add a few water tanks that are fed by a well or rural water. Even if you don’t use them all the time, at least you have an alternative when the ponds get low. Frost-free waterers can also save you time and hassle during the winter by keeping you from chopping ice. If you only have ponds, consider getting them cleaned out to increase the volume of water they can hold. The Soil and Water Conservation Districts (SWCD) have programs right now to assist with the expense of cleaning out ponds that were built with cost-share money originally. Contact your local SWCD Office for more information.

Diversifying forages to include some native warm-season grasses or warm-season annuals is a good idea for any livestock operation to fill the cool-season grass “summer slump.” Warm-season forages are beneficial every year but are especially valuable during a drought. Their extended root system can access water deep in the soil profile.

Having a grazing and fertility plan for your pastures will keep them healthy and productive and,  as a result, they will be impacted less by drought. A fertility program such as MFA’s Nutri-Track utilizes grid soil samples to make fertilizer recommendations that get the right product in the right place. This increases the health of your plants on every acre, making them more productive and improving their stress tolerance.

A rotational grazing system also helps pastures be more productive and resilient. It keeps the plants from getting grazed too short and gives them periods of rest so they can recover before grazing again. Among other benefits, this allows the roots to stay robust for better access to water and nutrients.

None of these things are the silver bullet to drought conditions, but if implemented they will slowly make your operation more “drought-proof” for the future.

  • Created on .
  • Hits: 569

Strategies to deal with forage shortage

Hay season ended early for many cattle producers in MFA country this year, mainly because there wasn’t much of it to cut. Cold, dry weather didn’t provide the spring growth cattlemen needed, and May was the hottest on record for Missouri. Compounding this year’s forage shortage, long-term precipitation deficits going back to summer of 2017 have made the hay supply situation even worse.

There are several means of addressing the situation. One is to bring in hay. While very effective, this can be difficult due to supply and availability issues. Reducing forage requirements and improving forage utilization are more viable options.

Reduce forage requirements

First, consider culling animals. If culling is inevitable, don’t put it off. Delaying the sale of at least part of the cattle inventory further reduces forage supply and potentially exposes you to greater market risk if the drought persists.

Wean calves early. Many dairy replacements are taken off milk or milk replacer at 1 month old, which is a bit young, but 60-90 days of age is certainly an effective solution. Weaning greatly reduces the cow’s energy requirement and helps her keep body condition, which means she is more likely to get bred. If you’re relying on pasture to put weight on cows, hold the quality pasture for calves. A better option is to put them in a yard and feed them. A calf under 400 pounds has a tough time gaining 2 pounds a day exclusively on forage, and putting the calves in a lot will further stretch forage for the cows. Small calves have excellent feed conversions. We routinely see feed conversions of 3.8 to 4 on calves fed MFA Cattle Charge or Full Throttle.

To reduce forage requirements, you can also feed concentrate to replace total digestible nutrients (TDN) and protein as well as provide adequate vitamin and mineral fortification. Feeding 6 to 7 pounds of forage extender cubes/pellets will replace 10 pounds of hay. I recommend MFA Forage Extender Cubes to help stretch forage supplies. A limit-fed concentrate program means cows are always happy to see you.

Consider tactics of maintaining the body condition score (BCS) of cows. The winter months are the most expensive time to put body condition on cows. Cows are not going to gain weight just after they calve and most likely not until they get adequate spring grass. Keeping cows in a BCS of more than 5 and heifers above 5.5 will allow them to use fewer total calories.

Improve forage utilization

Treating low-quality forages with oxides, such as ammonia and calcium oxide, improves fiber digestibility and energy value. The ammonia treatment raises the crude protein equivalent. Keep in mind, there are handling issues when oxide-treating forages, so be sure to know what you are doing before you start.

Start feeding hay and/or supplements before pastures become too short. This will stretch pasture forages, reduce the incidence of overgrazing and ensure that cows do not become thin before winter. Lower-quality hay could be fed now and pastures grazed during late fall and early winter, assuming we get some moisture to stimulate fall regrowth. But as we know, in the Midwest, a normal August is hot and dry.

To improve forage utilization and harvest efficiency, strip graze or rotationally graze pastures. Likewise, feeding a total mixed ration in a yard improves harvest efficiency.

Feed a balanced supplement, making sure you don’t overfeed starch, protein, etc. 

Provide an ionophore such as MFA 14% Stock Grower BT or Super Beef Supplement with Rumensin. The higher the energy of the feed, the bigger the response to using an ionophore. On a rough forage base, the best rate of Rumensin might be 100 milligrams per head per day for brood cows. On an all-they-can-eat, 200-bushel-per-acre corn silage buffet, they will take 300 milligrams per day and think it is a good start.

The National Drought Mitigation Center’s long-term and short-term drought models are online at If you’re looking for ways to stretch your forage supplies, talk with your MFA feed specialist about recommendations for your farm.

  • Created on .
  • Hits: 2113

Are your forages worry-free?

When it comes to the what, when and how of nitrates and prussic acid in your forages, there are differences and similarities. This basic information can help you distinguish these sources of poisoning in livestock.

Prussic acid

A significant risk of grazing forages that are damaged by frost or growing after a drought-ending rain is hydrocyanic acid poisoning, more commonly known as prussic acid or cyanide poisoning. Plants in the sorghum family are susceptible to prussic acid formation. These include johnsongrass, sudangrass, sorghum and sorghum-sudan hybrids. Pearl millet does not produce prussic acid (but does accumulate nitrates) and can be safely grazed following a frost. Under normal growing conditions, these plants produce a nontoxic substance called dhurrin. When plants are injured by frost or wilting, enzymes come into contact with dhurrin and release toxic prussic acid or cyanide. Prussic acid is lethal to animals because the cyanide prevents oxygen transfer from the blood, and animals suffocate at the cellular level.

Prussic acid poisoning often occurs very rapidly. The time from ingestion of toxic forages to death can be as brief as 10 to 15 minutes. Typical animal symptoms include excessive salivation, rapid breathing and muscle spasms. Animals are occasionally observed staggering through the pasture before collapse and death. The only reliable method to avoid animal losses is preventative management. Successful treatment is almost impossible because of the rapid progression, so animals must be removed from toxic pastures immediately.

Managing for prussic acid

  • High levels of prussic acid form when sorghums are injured by frost, resume growth following drought, have high soil nitrogen or low phosphorus levels and after 2,4-D applications. Having a good soil fertility program to ensure the conversion of nitrogen is most effective and will help minimize the risk of both nitrate and prussic acid poisoning. Excessive nitrogen applications will increase the risk for both types of poisoning.
  • Don’t graze the crop until it is 18-24 inches high. Young plants and regrowth have higher prussic acid levels.
  • Do not graze or green chop after a light frost. Wait 10-14 days before grazing or green chopping. After a killing frost, wait until the plant has completely dried for at least 10 days.
  • Prussic acid tends to accumulate more in shorter sorghums, less in taller plants. Leaves accumulate more prussic acid and fewer nitrates. Stalks are higher in nitrates and lower in prussic acid.
  • Testing is usually not useful. By the time lab results get back, the prussic acid will have dissipated.
  • Most prussic acid is lost during the curing process. Crops cut and allowed to wilt before chopping or ensiling and field drying will allow for the acid to volatilize from the forage.


Nearly all forages contain nitrates. Ruminants (via rumen microflora) are able to convert the nitrates to nitrites and then eventually to ammonia, which is usable by the animal. However, nitrites are also able to enter the bloodstream where they convert hemoglobin (an oxygen-carrying molecule) to methemoglobin (unable to carry oxygen). Thus, animals consuming forages with too many nitrates, especially over a short period of time, may produce high levels of methemoglobin, which can lead to reproductive loss and/or death.

Physical signs of excessive nitrates are difficult and rapid breathing, muscle tremors, low tolerance to exercise, incoordination, diarrhea, frequent urination, collapse and death. Abortions can happen following nitrate poisoning. Nitrates dilate blood vessels that lead to peripheral circulation loss and loss of oxygen to the fetus.  

Nitrates are taken up by the plant and converted to plant products in the leaves. However, when normal plant processes are disrupted, nitrates concentrate in the stalk. Plant stressors include growing under shaded or low-light conditions, herbicide applications, diseases and detrimental weather such as drought, hail, frost and low temperatures. The amount of nitrates accumulated will also depend on plant species, stage of maturity and nitrogen fertilization.

If you have questions or concerns about prussic acid or nitrates, contact your MFA livestock specialist or AGChoice location.

Managing for Nitrates

  • Nitrates can accumulate when plants are stressed and in soils where ample nitrogen is available.
  • Best practice is ensiling to reduce nitrate levels. Allow three weeks for full ensiling to occur. Dilute high-nitrate silage with normal forage and/or grain.
  • Dry baling concentrates nitrates more. Nitrate doesn’t dissipate like prussic acid.
  • Do not green-chop or feed direct-cut forage if high nitrate levels are present.
  • Delay harvest several days after a drought-ending rain and right after herbicide application.
  • Cut high-nitrate fields at a high stubble height. Nitrates tend to accumulate in the lower third of the stalk.
  • Younger plants will be higher in nitrates than mature plants, unless mature plants are under stress and/or in high-nitrogen soil.
  • Species such as sorghums/sudangrasses store high levels of nitrate, and brome and orchardgrass have very little under normal growing conditions. Small-grain annuals and millet that are hayed will have more nitrates if harvested immature. Legumes generally do not contain high levels. 
  • It’s best to test for nitrates to ensure they are at safe levels.
  • Created on .
  • Hits: 1247

Shield cattle from heat stress

One of the great challenges the dairy industry faces, especially during the summer, is heat stress. Increased temperatures, together with higher humidity, result in a decrease in milk production, feed intake, feed efficiency and growth rate in heifers. Reproduction and health are also negatively affected by heat stress.

There are different ways to reduce the effects of heat stress on cows, such as fans with water sprayers or cow housing and shading. However, not all operations are able to implement such management systems, and even with these measures, cows can still experience a certain amount of heat stress.

The thermal comfort range of lactating dairy cows is estimated to be from 32 to 75 degrees. Temperature, however, is not the only factor that plays a role in heat stress. An increase in relative humidity also increases heat stress in animals. Both temperature and humidity are used to calculate Thermal Heat Index (THI). The comfort threshold is considered to be a THI of 72, but high-producing milk cows start to experience heat stress from a THI of 68. The estimated response is that milk yield drops by half a pound for every unit increase in THI above 72.

Effects on production will not necessarily be directly after cows experience heat stress. There is often a lag time between increase in THI and the full effects on production. The first day of stress is not so bad, but dry matter intake is most sensitive to the mean air temperature two days earlier.

Lactating dairy cows produce a large quantity of metabolic heat and accumulate additional heat from the environment. A dairy cow produces more heat than a 1,500-watt hair dryer running full blast. Cattle decrease feed intake in an attempt to create less metabolic heat, as the heat increment of feeding is a large portion of whole body heat production. In addition to reduced nutrient intake, heat-stressed cows have an increase in maintenance cost. Maintaining body temperature has a large energy cost. Because of decreased energy availability and increased energy utilization, heat-stressed cows enter into negative energy balance. Methods to counteract the negative energy balance include increasing energy density of the diet or improving digestibility of feed components. Inclusion of feed additives, such as ionophores, yeast or MFA Shield Technology can improve nutrient digestibility.

Three management strategies to minimize the effect of heat stress are:

  1. Physical modification of environment
  2. Genetic development of heat-tolerant breeds
  3. Improved nutritional management practices

Since I’m a ruminant nutritionist, I am after the third strategy. If I only have a hammer in the toolbox, everything looks like a nail.

Feed intake plays a significant role in production—both the amount of feed being consumed per day and the feed intake pattern. Uneven feed intake during the day can have a negative effect on the rumen environment by increasing the fluctuation of rumen pH. During heat stress, cows will have decreased feed intake. As a result, cows tend to consume more feed during the night with cooler temperatures, causing increased variation in feed intake.

When adding Shield to the diet of heat-stressed cows, it is common to see dry matter intake increase by 8 to 10 percent, or rather come back two-thirds of where we would expect cows to be if they were not stressed. Also, we see a reduced size in the first morning meal. I am not certain if there is increased meal frequency or not; some farmers report “yes” and others “no.”

Water is arguably the most important nutrient for dairy cows. Shield Technology tends to increase water intake, similar to what we see with niacin. Both have a vasodilation or increased blood flow effect. Increases in water intake, especially during heat stress, can have a positive effect on the decrease in body temperature as well as an increase in performance. In dairy cows, Shield has also been shown to increase saliva production during feeding compared to TMRs without Shield components.

Heat-stressed cattle show a reduction of antioxidant activity of plasma, which means they are experiencing an increased oxidative stress. Oxidative stress can lead to damaged molecules and disruption of normal metabolism and physiology. Feeding

Shield components has been shown to reduce oxidative stress.

Visit with your local MFA feed specialists for more information on how Shield Technology can help mitigate the effects of heat stress this summer.

  • Created on .
  • Hits: 2116

About Today's Farmer magazine

Today's Farmer is published 9 times annually. Printed issues arrive monthly except combined issues for June/July, August/September and December/January. Subscriptions are available only in the United States.

If you would like to begin or renew a print subscription, CLICK HERE and go to our shop. We are proud to offer the subscription for only $15 per year.

 ©2020 MFA Incorporated.

Connect with us.